

PT-003-1164003

Seat No.

M. Sc. (Sem. IV) Examination

August - 2020

Mathematics: CMT - 4003

(Number Theory - 2)

Faculty Code: 003

Subject Code: 1164003

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) There are five questions.

- (2) Attempt all the questions.
- (3) Each question carries equal marks.
- 1 Answer any seven of the following:

14

- (1) Find the value of r_0, r_1, r_2 and r_3 for the continued fraction expansion <1.1,1.1,2>.
- (2) Find the general solution of Diophantine equation 4x + 8y = 42.
- (3) Find two Primitive Pythagorean triplet (x, y, z) for which z < 59.
- (4) Define with examples : (a) Quadratic irrational and (b) Pell's Equation.
- (5) Find two positive integers n such that $1+2+3+\cdots+n$ is a perfect square.
- (6) Express the rational numbers $\frac{101}{7}$ and $\frac{1437}{11}$ as simple continued fractions.
- (7) Find the continued expansion of $\frac{\sqrt{5}+1}{2}$ and $\frac{\sqrt{5}-1}{2}$.
- (8) Show that gcd(x, y) = gcd(y, z), where (x, y, z) is a Pythagorean Triplet.
- (9) Write down the Farey fractions between 0 and 1 in the rows upto 7th row.
- (10) Find the value of <1,1,2,2,2,... and <-2,2,4,3,3>.

2	Ansv	wer any two of the followigng:	14
	(1)	State and prove Hurwitz Inequality for simple continued fractions.	7
	(2)	(a) Prove that for an irrational number x the infinite continued expansion is always unique.	4
		(b) If $a_0 a_1 a_2 \dots a_n$, is sequence of integers with	3
		$a_i \ge 1$; for $i = 1, 2, 3,$, then show that	
		$\left xk_n-h_n\right <\left \frac{1}{k_{n+1}}\right ; \forall n, \text{ where } x \text{ is in irrational number.}$	
	(3)	Suppose $u \neq 0$ is an integer and $v > 1$ is not a perfect	7
		square with $ u < \sqrt{v}$. If (a,b) is the positive solution of $x^2 - vy^2 = u$ then $a = h_n$ and $b = k_n$, for some n provided $(a,b) = 1$.	
3	Ansv	wer the following:	14
	(1)	(a) Find three positive solutions of the equation $x^2 - 3y^2 = 1$.	3
		(b) Justify: Is $x^2 - 15y^2 = -1$ has a solution in integers?	4
	(2)	Suppose $\langle a_0, a_1 a_2, \dots, a_n, \dots \rangle$ be an infinite sequence of	7
		integers with $a_i \ge 1$; for $i = 1, 2, 3,n$ then prove that the subsequences r_{2j} and r_{2j-1} both converge to the same point, where h_j, k_j and r_j are defined as usual.	
OR			
3	Ansv	wer the following:	14
	(1)	Prove that if θ is an irrational number and suppose	7
		for some rational number $\frac{a}{b}$ for $b > 0$ and $(a,b) = 1$ with	
		$ \theta b - a < \theta k_n - h_n $ for some n then $b \ge k_{n+1}$.	
	(2)	(a) Prove that the equation $30x^2 - 14y^2 = 18$ does not have solutions in integer.	3
(b) Find four solution of the equation $x^2 - 29y^2 = 1$. 4 PT-003-1164003] 2 [Contd			

4 Answer the following:

14

7

- (1) Write an algorithm to find the sequence of integers $a_0, a_1 a_2, \dots, a_n, \dots$ when an irrational number is given and then explain with an example.
- (2) Prove that the value of $f(x) = x^4 + x^3 + x^2 + x + 1$ is a perfect square only for x = -1, 0, 3 otherwise f(x) is not a perfect square.
- 5 Answer any two of the following:

- 14
- (1) If x>1 and -1< x'<0 the show that the continued fraction expansion of x is purely periodic provided x is a quadratic irrational.
- (2) Show that if the triplet (x, y, z) is a Primitive 7 Pythagorean triplet then there exists r and s such that $r > s \ge 1$.(r, s) = 1 and r is even then s is odd and vice—versa.
- (3) Show that the equation $x^2 = y^3 + 7$ has no solution in integers.